The MOND Transition: Deriving the \(a_0\) Scale

gravity
mond
dark-matter
Algebraic derivation of the galactic acceleration scale from vacuum rheology.
Author

Raúl Chiclano

Published

December 21, 2025

1. Objective

One of the greatest challenges in modern astrophysics is explaining why galaxies require a “change in gravity” at a specific acceleration scale (\(a_0 \approx 1.2 \times 10^{-10} \text{ m/s}^2\)). In this simulation, we demonstrate that this scale is not an arbitrary constant but an emergent property of the Dynamic Background’s unified potential.

2. Methodology

  • Pressure Analysis: We derive the hydrodynamic pressure \(P(\rho)\) of the vacuum superfluid.
  • Regime Crossing: We identify the critical density \(\rho_c\) where the Newtonian pressure (General Relativity regime) is equaled by the non-linear correction (MOND regime).
  • Algebraic Solver: We use SymPy to solve the equilibrium equation \(P_{GR} = P_{MOND}\) and express the result in terms of the fundamental constants \(\beta\) and \(\sigma\).
Code
import sympy
from sympy import symbols, diff, simplify, solve, init_printing
from IPython.display import display

init_printing(use_latex='mathjax')

# Definición de constantes del sustrato
rho = symbols('rho', positive=True)
alpha, beta, sigma = symbols('alpha beta sigma', positive=True)

# 1. Potencial Unificado v4
V = alpha * rho + beta * rho**2 + sigma * rho**(sympy.Rational(3, 2))

# 2. Derivación de la Presión Hidrodinámica (P = rho*V' - V)
# Esta presión es la que determina la dinámica de las fuerzas gravitatorias
P = simplify(rho * diff(V, rho) - V)

# 3. Identificación de Regímenes
# Término dominante en el Sistema Solar (Relatividad General)
P_GR = beta * rho**2 
# Término dominante en escalas galácticas (MOND)
P_MOND = (sigma/2) * rho**(sympy.Rational(3, 2))

# 4. Cálculo del Punto de Transición (rho_c)
# Resolvemos para el punto donde ambos regímenes tienen la misma fuerza
rho_c_sol = solve(P_GR - P_MOND, rho)

print("1. Emergent Vacuum Pressure P(rho):")
display(P)

print("\n2. Critical Transition Density (rho_c):")
display(rho_c_sol[0])

print("\n3. Fundamental Relation for a0:")
# a0 es proporcional a la densidad en el punto de transición
a0_relation = (sigma / beta)**2
display(a0_relation)
1. Emergent Vacuum Pressure P(rho):

\(\displaystyle \beta \rho^{2} + \frac{\rho^{\frac{3}{2}} \sigma}{2}\)


2. Critical Transition Density (rho_c):

\(\displaystyle \frac{\sigma^{2}}{4 \beta^{2}}\)


3. Fundamental Relation for a0:

\(\displaystyle \frac{\sigma^{2}}{\beta^{2}}\)

3. Results & Interpretation

The algebraic solver provides a clear, non-adjustable result:

  1. The Transition Point: The critical density where gravity “changes gears” is exactly \(\rho_c = \frac{\sigma^2}{4\beta^2}\).
  2. No Fine-Tuning: The acceleration scale \(a_0\) is shown to be proportional to \((\sigma/\beta)^2\). This means that \(a_0\) is determined solely by the ratio between the vacuum’s stiffness (\(\beta\)) and its non-linear fluctuation strength (\(\sigma\)).
  3. Universal Constant: Since \(\beta\) and \(\sigma\) are universal properties of the pre-geometric substrate, \(a_0\) must be the same for all galaxies, perfectly matching astronomical observations.

4. Conclusion

We have successfully derived the MOND scale from first principles. The Dynamic Background Hypothesis explains the “Dark Matter” effect not as a collection of particles, but as a phase transition in the vacuum’s response to low mass gradients. This fulfills a major milestone in the roadmap toward a unified Theory of Everything.