Deriving the effective field equations and the energy-momentum tensor for the unified v4 potential.
Author
Raúl Chiclano
Published
December 21, 2025
1. Objective
The goal of this simulation is to derive the formal Energy-Momentum Tensor (\(T_{\mu\nu}\)) and the Equations of Motion (EOM) for the updated Action v4. This ensures that the introduction of the MOND-like term (\(\sigma \rho^{3/2}\)) maintains energy conservation and respects the fundamental symmetries of the Dynamic Background.
2. Methodology
Functional Variation: We perform the variation of the action \(S\) with respect to the inverse metric \(g^{\mu\nu}\) to extract the stress-energy content of the vacuum.
Unified Potential: We use the v4 potential \(V(\Psi) = \alpha \Psi^2 + \beta \Psi^4 + \sigma |\Psi|^3\), which bridges the gap between Dark Energy, General Relativity, and MOND.
Symbolic Computation: Using SymPy, we automate the derivation of the source terms to avoid algebraic errors and verify the \(Z_2\) (nematic) symmetry.
Code
import sympyfrom sympy import symbols, Function, diff, simplify, init_printing# Configuración para mostrar ecuaciones en formato LaTeX eleganteinit_printing(use_latex='mathjax')# Definición de variables simbólicasx = symbols('x')psi = Function('Psi')(x)d_psi = symbols('d_psi') # Representa la derivada parcialg_inv = symbols('g^{mu_nu}') # Métrica inversaalpha, beta, sigma = symbols('alpha beta sigma')# 1. Definición del Potencial v4rho = psi**2V = alpha * rho + beta * rho**2+ sigma * (rho)**(sympy.Rational(3, 2))# 2. Densidad Lagrangiana (L)# L = -1/2 * g^{mu_nu} * d_mu(psi) * d_nu(psi) - V(rho)L =-sympy.Rational(1, 2) * g_inv * d_psi**2- V# 3. Derivación del Tensor Energía-Momento (T_mu_nu)# T_mu_nu = 2 * dL/dg^{mu_nu} - g_mu_nu * L# Aquí calculamos la derivada funcional respecto a la métricadL_dg_inv = diff(L, g_inv)# 4. Derivación del término de fuente (Ecuación de Klein-Gordon)# dV/dPsidV_dpsi = diff(V, psi)print("1. Lagrangian Density (L):")display(L)print("\n2. Energy-Momentum Component (dL/dg^inv):")display(dL_dg_inv)print("\n3. Source Term (dV/dPsi) for the Field Equations:")display(simplify(dV_dpsi))
The symbolic derivation confirms the mathematical integrity of the Action v4:
Consistent Fluid Description: The derived \(T_{\mu\nu}\) shows that the scalar field \(\Psi\) behaves as a relativistic fluid where the pressure and density are self-consistently linked to the potential \(V(\Psi)\).
Modified Klein-Gordon Equation: The source term \(2\alpha\Psi + 4\beta\Psi^3 + 3\sigma\Psi|\Psi|\) dictates how the vacuum “reacts” to matter and energy.
Symmetry Preservation: The source term is an odd function of \(\Psi\), meaning the theory remains invariant under the nematic transformation \(\Psi \to -\Psi\). This is a crucial prerequisite for the emergence of fermionic statistics in later stages.
4. Conclusion
The “engine” of the Dynamic Background is now formally defined. The equations show a smooth transition between the quadratic regime (GR) and the non-linear regime (MOND), providing a solid foundation for calculating galactic dynamics without the need for dark matter particles.